Review the Crawford
Group Publications

Crawford, J., Rasumussen, J., McNeary, W., Hayden, S., Durra, N., Pang, S., Yung, M. (2024) High Selectivity Reactive Carbon Dioxide Capture over Zeolite Dual-Functional Materials. ACS Catalysis.

About the Cover:

Hybrid sorbent-catalysts are the heart of the reactive carbon dioxide capture process. Here, we introduce a series of zeolite dual-functional materials (ZFMs) featuring sodium oxide sites for CO2 capture and dispersed noble metal sites for H2 activation. ZFMs display high carbon dioxide uptake and high selectivity where the terminal C1 hydrogenation products are controlled by the active metal species.
[https://doi.org/10.1021/acscatal.4c01340]

Crawford, J., Petel, B., Rasmussen, M., Ludwig, T., Miller, E., Halingstad, S., Akhade, S., Pang, S., Yung, M. (2023). Influence of residual chlorine on Ru/TiO2 active sites during CO2 methanation. Applied Catalysis A: General. [dx.doi.org/10.1016/j.apcata.2023.119292]

Sabatier reaction illustration

Crawford, J., Carreon, M. (2022). New Evidence for a Dicopper Core within Zeolite Mordenite Side Pockets. The Journal of Physical Chemistry C. [dx.doi.org/10.1021/acs.jpcc.1c10774]

Copper zeolite average nuclearity illustration

Crawford, J., Jasinski, J., Carreon, M. (2021). Towards continuous deoxygenation of acetic acid catalyzed by recyclable mono/bi/trimetallic zeolite catalysts. Journal of Catalysis.
[dx.doi.org/10.1016/j.jcat.2021.07.018]

Acetic Acid Deoxygenation Illustration

Crawford, J., Anderson, R., Gasvoda, R., Kovach, N., Smoljan, C., Jasinski, J., Trewyn, B., Agarwal, S., Gómez-Gualdrón, D., Carreon, M. (2020). Vacancy Healing as a Desorption Tool: Oxygen Triggered Removal of Stored Ammonia from NiO1–x/MOR Validated by Experiments and Simulations. ACS Applied Energy Materials.
[dx.doi.org/10.1021/acsaem.0c00634]

About the Cover:

As a top industrial chemical, ammonia has wide global uses. One challenge is the safe and affordable transport of NH3. Porous sorbents have been proposed as high uptake storage materials; however, irreversible binding and poor recyclability are barriers to their success. In this proof-of-concept work, we show that NH3 can be removed by heat produced during the healing of oxygen vacancy sites in metal–zeolite nanocomposites.

Applied Energy Materials Publication

Smoljan, C., Crawford, J., Carreon, M. (2020). Mesoporous microspherical NiO catalysts for the deoxygenation of oleic acid. Catalysis Communications.
[dx.doi.org/10.1016/j.catcom.2020.106046]

Mesoporous microspherical NiO catalysts Illustration

Crawford, J., Carreon, M. (2018). Decarboxylation of Diunsaturated Linoleic Acid to Heptadecane over Zeolite Supported Pt/ZIF-67 Catalysts. Industrial & Engineering Chemistry Research.
[dx.doi.org/10.1021/acs.iecr.8b02799]

Decarboxylation of Diunsaturated Linoleic Acid Illustration

-2023-

(29) Crawford, J., Petel, B., Rasmussen, M., Ludwig, T., Miller, E., Halingstad, S., Akhade, S., Pang, S., Yung, M. (2023). Influence of residual chlorine on Ru/TiO2 active sites during CO2 methanation. Applied Catalysis A: General. [dx.doi.org/10.1016/j.apcata.2023.119292]

(28) Nguyen, H., Gorky, F., Guthrie, S., Crawford, J., Carreon, M., Jasinski, J., Carreon, M. (2023). Plasma catalytic non-oxidative methane conversion to hydrogen and value-added hydrocarbons on zeolite 13X. Energy Conversion and Management. [dx.doi.org/10.1016/j.enconman.2023.117082]

(27) Cronmiller, L., Crawford, J., Zhang, J., Vardon, D., Strathmann, T. (2023). Hydrothermal catalytic conversion of oleic acid to heptadecane over Ni/ZrO2. Journal of Hazardous Materials Advances. [dx.doi.org/10.1016/j.hazadv.2023.100273]

-2022-

(26) Denning, S., Majid, A., Crawford, J., Wells, J., Carreon, M., Koh, C. (2022). Methane storage scale-up using hydrates and metal organic framework HKUST-1 in a packed column. Fuel. [dx.doi.org/10.1016/j.fuel.2022.124920]

(25) Wei, Q., Crawford, J., Wolden, C., Carreon, M. (2022). ZIF-21 Crystals: Its Morphology Control and Potential as an Adsorbent for Ammonia Capture. The Journal of Physical Chemistry C. [dx.doi.org/10.1021/acs.jpcc.2c04191]

(24) Gorky, F., Nguyen, H., Lucero, J., Guthrie, S., Crawford, J., Carreon, M., Carreon, M. (2022). CC3 porous organic cage crystals and membranes for the non-thermal plasma catalytic ammonia synthesis. Chemical Engineering Journal Advances. [dx.doi.org/10.1016/j.ceja.2022.100340]

(23) Krishnan, K., Crawford, J., Thallapally, P., Carreon, M. (2022). Porous Organic Cages CC3 and CC2 as Adsorbents for the Separation of Carbon Dioxide from Nitrogen and Hydrogen. Industrial & Engineering Chemistry Research. [dx.doi.org/10.1021/acs.iecr.2c00146]

(22) Buggy, N., Wu, I., Du, Y., Ghosh, R., Kuo, M., Ezell, M., Crawford, J., Seifert, S., Carreon, M., Coughlin, E., Herring, A. (2022). Evaluating the effect of ionomer chemical composition in silver-ionomer catalyst inks toward the oxygen evolution reaction by half-cell measurements and water electrolysis. Electrochimica Acta. [dx.doi.org/10.1016/j.electacta.2022.140124]

(21) Crawford, J., Carreon, M. (2022). New Evidence for a Dicopper Core within Zeolite Mordenite Side Pockets. The Journal of Physical Chemistry C. [dx.doi.org/10.1021/acs.jpcc.1c10774]

-2021-

(20) Denning, S., Majid, A., Crawford, J., Carreon, M., Koh, C. (2021). Promoting Methane Hydrate Formation for Natural Gas Storage over Chabazite Zeolites. ACS Applied Energy Materials. [dx.doi.org/10.1021/acsaem.1c02902]

(19) Denning, S., Lucero, J., Majid, A., Crawford, J., Carreon, M., Koh, C. (2021). Porous Organic Cage CC3: An Effective Promoter for Methane Hydrate Formation for Natural Gas Storage. The Journal of Physical Chemistry C. [dx.doi.org/10.1021/acs.jpcc.1c04657]

(18) Crawford, J., Jasinski, J., Carreon, M. (2021). Towards continuous deoxygenation of acetic acid catalyzed by recyclable mono/bi/trimetallic zeolite catalysts. Journal of Catalysis. [dx.doi.org/10.1016/j.jcat.2021.07.018]

(17) Lucero, J., Crawford, J., Wolden, C., Carreon, M. (2021). Tunability of ammonia adsorption over NaP zeolite. Microporous and Mesoporous Materials. [dx.doi.org/10.1016/j.micromeso.2021.111288]

(16) Denning, S., Majid, A., Lucero, J., Crawford, J., Carreon, M., Koh, C. (2021). Methane Hydrate Growth Promoted by Microporous Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-67 for Enhanced Methane Storage. ACS Sustainable Chemistry & Engineering. [dx.doi.org/10.1021/acssuschemeng.1c01488]

(15) Gorky, F., Guthrie, S., Smoljan, C., Crawford, J., Carreon, M., Carreon, M. (2021). Plasma ammonia synthesis over mesoporous silica SBA-15. Journal of Physics D: Applied Physics. [dx.doi.org/10.1088/1361-6463/abefbc]

(14) Gorky, F., Lucero, J., Crawford, J., Blake, B., Carreon, M., Carreon, M. (2021). Plasma-Induced Catalytic Conversion of Nitrogen and Hydrogen to Ammonia over Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-67. ACS Applied Materials & Interfaces. [dx.doi.org/10.1021/acsami.1c03115]

(13) Wei, Q., Lucero, J., Crawford, J., Way, J., Wolden, C., Carreon, M. (2021). Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes. Journal of Membrane Science. [dx.doi.org/10.1016/j.memsci.2021.119078]

(12) Dunn, C., Denning, S., Crawford, J., Zhou, R., Dwulet, G., Carreon, M., Gin, D., Noble, R. (2021). CO2/CH4 separation characteristics of poly(RTIL)-RTIL-zeolite mixed-matrix membranes evaluated under binary feeds up to 40 bar and 50°C. Journal of Membrane Science. [dx.doi.org/10.1016/j.memsci.2020.118979]

(11) Kian, K., Liguori, S., Pilorgé, H., Crawford, J., Carreon, M., Martin, J., Grimm, R., Wilcox, J. (2021). Prospects of CO2 capture via 13X for low-carbon hydrogen production using a Pd-based metallic membrane reactor. Chemical Engineering Journal. [dx.doi.org/10.1016/j.cej.2020.127224]

(10) Gorky, F., Lucero, J., Crawford, J., Blake, B., Guthrie, S., Carreon, M., Carreon, M. (2021). Insights on cold plasma ammonia synthesis and decomposition using alkaline earth metal-based perovskites. Catalysis Science & Technology. [dx.doi.org/10.1039/D1CY00729G]

-2020-

(9) Denning, S., Majid, A., Lucero, J., Crawford, J., Carreon, M., Koh, C. (2020). Metal–Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity. ACS Applied Materials & Interfaces. [dx.doi.org/10.1021/acsami.0c15675]

(8) Crawford, J., Anderson, R., Gasvoda, R., Kovach, N., Smoljan, C., Jasinski, J., Trewyn, B., Agarwal, S., Gómez-Gualdrón, D., Carreon, M. (2020). Vacancy Healing as a Desorption Tool: Oxygen Triggered Removal of Stored Ammonia from NiO1–x/MOR Validated by Experiments and Simulations. ACS Applied Energy Materials. [dx.doi.org/10.1021/acsaem.0c00634]

(7) Smoljan, C., Crawford, J., Carreon, M. (2020). Mesoporous microspherical NiO catalysts for the deoxygenation of oleic acid. Catalysis Communications. [dx.doi.org/10.1016/j.catcom.2020.106046]

-2019-

(6) Crawford, J., Zaccarine, S., Kovach, N., Smoljan, C., Lucero, J., Trewyn, B., Pylypenko, S., Carreon, M. (2019). Decarboxylation of stearic acid over Ni/MOR catalysts. Journal of Chemical Technology & Biotechnology. [dx.doi.org/10.1002/jctb.6211]

(5) Crawford, J., Smoljan, C., Lucero, J., Carreon, M. (2019). Deoxygenation of Stearic Acid over Cobalt-Based NaX Zeolite Catalysts. Catalysts. [dx.doi.org/10.3390/catal9010042]

(4) Lucero, J., Osuna, C., Crawford, J., Carreon, M. (2019). Microwave-assisted synthesis of porous organic cages CC3 and CC2. CrystEngComm. [dx.doi.org/10.1039/C9CE00880B]

(3) Wu, T., Lucero, J., Crawford, J., Sinnwell, M., Thallapally, P., Carreon, M. (2019). SAPO-34 membranes for xenon capture from air. Journal of Membrane Science. [dx.doi.org/10.1016/j.memsci.2018.12.021]

(2) Lucero, J., Crawford, J., Osuna, C., Carreon, M. (2019). Solvothermal synthesis of porous organic cage CC3 in the presence of dimethylformamide as solvent. CrystEngComm. [dx.doi.org/10.1039/C9CE00662A]

-2018-

(1) Crawford, J., Carreon, M. (2018). Decarboxylation of Diunsaturated Linoleic Acid to Heptadecane over Zeolite Supported Pt/ZIF-67 Catalysts. Industrial & Engineering Chemistry Research. [dx.doi.org/10.1021/acs.iecr.8b02799]

Crawford Group Opportunities

Our team is built of motivated PhD students interested in working at the interface of heterogeneous and enzyme catalysis. Learn More on our Opportunities page.

Montana State University Sign